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Transition from quasiperiodicity to chaos of a soliton oscillator
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We study the properties of the quasiperiodic attractors of the driven and damped sine-Gordon
system close to the onset of chaotic dynamics. Our system is a perturbed sine-Gordon equation
with ac and dc forcing terms over a finite-size spatial interval. In this system the quasiperiodic
trajectories are generated by the incommensurability of the soliton oscillation and external drive
frequencies. For increasing values of the ac drive amplitude the attractors of the system, displayed
in a spatially averaged Poincaré section, present the characteristic folding and mixing properties of
the transition to chaos through quasiperiodicity. In the parameter plane that we scan, the basic
features of the transition are not dependent upon the particular ac drive amplitude and frequency
causing the transition. Analysis of the singularity spectrum f(a) of several attractors at the chaotic
threshold exhibits general features of the transition.

PACS number(s): 03.40.Kf, 74.50.+r, 74.60.Ge

The study of chaotic states of the driven and damped
sine-Gordon (SG) equation began a decade ago and a
number of works were dedicated to the onset of chaos un-
der particular dynamical conditions and choices of forc-
ing terms [1-5]. An intriguing aspect of the transition
to chaos in the SG system is the existence of an obvious
competition between the background chaotic tendencies,
due to the well known chaotic dynamics of the driven pen-
dulum [6], and the coherent spatial patterns composed of
soliton oscillations. Therefore the study of the transition
to chaos in this system can yield information for a class of
systems in which spatiotemporal competitions exist [7].

The first work dealing with the spatiotemporal chaos
in the sine-Gordon system was by Bishop et al. [1]. These
authors considered a driven sine-Gordon equation includ-
ing a uniform ac forcing term over a spatial interval on
which they imposed periodic boundary conditions. Due
to the absence of the dc forcing terms the spatiotempo-
ral competition in this case was limited to breather and
plasma modes and background oscillations. Somewhat
similar phenomena were later reported by Guerrero and
Octavio [4].

The interest for potential practical applications of col-
lective excitations of soliton oscillators based on long
Josephson junction devices moved much interest to the
spatial modes of the ac driven sine-Gordon equation over
a finite spatial interval with various boundary conditions.
Extensive numerical simulations [3,5,8], analytical ap-
proaches [9,10], and experiments [11] have been devoted
to the long Josephson junctions operated in the soliton
oscillation regime. Even when operated in this regime,
the chaotic patterns generated by the strong tendency
of the solitons to maintain their oscillatory motion and
the chaotic background were evident [5]. The oscilla-
tory motion of solitons in the sine-Gordon system can be
obtained for adequate choice of dissipation and forcing
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terms [12,13].

In this paper we report on the transition from the
quasiperiodicity, generated by the incommensurability
between the soliton oscillation and external ac drive fre-
quencies, and more complicated dynamical states giv-
ing rise to folding and mixing of the attractors in the
Poincaré sections. We study the singularity spectrum
of the attractors close to the onset of these complicated
dynamical states and analyze their properties through
their f(c) functions [14]. This study is performed for
single soliton oscillations, fixing the dc forcing term but
varying the ac drive amplitude and frequency.

The system we investigate is governed by the equation

D1t — Pzz + sind + ydy = po + p1 sin(wt) (1)

with the boundary conditions

¢=(0,1) = ¢=(1,t) = 0. (2)

In Egs. (1) and (2) time and space are normalized to
standard parameters [1-5]. In terms of Josephson junc-
tions phenomenology the above equations model a long
Josephson junction (LJJ) having uniformly distributed
dc and rf currents over the extended spatial dimension,
and open circuit boundary conditions [5]. An extensive
study of the solutions of our system over the plane of
the parameters p; and w was performed by one of us for
! = 4.83 and v = 0.252 [5]. The region that was scanned
was the area close to the lowest threshold for the onset of
chaotic dynamics and, therefore, close to w =1 [6]. As a
specified context for our investigations we have used the
same parameter values reported in Fig. 1 of Ref. [5]. We
note that in the latter work no attempt was made to de-
scribe in detail the transition to chaos of the system. For
the parameter choice reported above, the frequency of
the soliton oscillations (the inverse of the time taken for
the single soliton to complete one back and forth journey
along the spatial interval) is 0.5145. Twice this frequency

(1.029) is termed the “proper” oscillation frequency in
Ref. [5].
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Our investigation of the chaotic transition proceeded
as follows. We fixed a point in the (w,p;) plane below
the threshold for the onset of the chaos and then, always
keeping po = 0.5 (this was the value of the driving force
used in Ref. [5]), for a constant value of the drive fre-
quency w we gradually increased the value of p;. The re-
sults of the numerical integration of the system described
by Egs. (1) and (2) were then displayed in terms of (a) a
Poincaré section averaged over the entire spatial interval
and (b) the Fourier transform of the corresponding out-
put wave forms: these were our main diagnostic tools for
analyzing the response of the system.

A typical result of our numerical experiments is shown
in Fig. 1. In Fig. 1(a), from the top to the bottom, the
four curves have been obtained respectively for p;=0.0,
0.25, 0.45, 0.558; fixing pp = 0.5 and w = 0.91. We
can clearly see that for the lower amplitudes of the ac
drive the quasiperiodic trajectory is very smooth with a
maximum and a minimum situated respectively around
0 and 7/2. With further increase of the value of p; up
to 0.45 (third curve from the top) the smooth quasiperi-
odic trajectories start bending, showing typical features
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FIG. 1. (a) Quasiperiodic trajectories obtained for increas-
ing values of the ac drive amplitude, fixing w = 0.91. The
lowest trajectory is the critical one obtained for p; = 0.558.
Increasing p; to 0.559 the system locks on the period 25 sub-
harmonic. (b) Fractal attractor obtained for p; = 0.582. The
circles and the crosses indicate periodic solutions generated
by a small dc forcing term perturbation. An amplification of
the area indicated by the square is shown in (c). Axes are in
normalized units.
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observed for other quasiperiodic attractors close to the
onset of chaos [15]. However, in our case the bending
of the curves does not evolve directly into more com-
plicated attractors as often happens with other systems
[4,15]. In fact, the value p; = 0.558 (fourth curve from
the top) represents a critical threshold after which the
system locks on the 25th subharmonic, as indicated by
the full dots in Fig. 1(a). The period 25 persists from
p1 = 0.559 up to p; = 0.564, after which the system
evolves into more complicated dynamical states. This is
a general feature that we have found in our numerical
experiments. The points of the period 25 solution are
dispersed around the critical quasiperiodicity attractor,
which is the one obtained for p; = 0.558.

In Fig. 1(b) we show the attractor obtained upon in-
creasing the ac drive amplitude to 0.582: a magnification
of the area indicated by the square in Fig. 1(b), reported
in Fig. 1(c), clearly shows its bending and folding prop-
erties. An interesting feature of our simulations is the
fact that, given a “chaotic” attractor obtained by fix-
ing the ac amplitude and frequency, a small perturba-
tion of the dc bias current can trigger the system toward
a periodic orbit. An example of this phenomenon for
the attractor that we are considering is also shown in
Figs. 1(b) and 1(c). The empty circles in Figs. 1(b) and
1(c) represent the period 7 solution that we obtain for
po = 0.495, while the crosses correspond to the period 6
solution that we obtain for pg = 0.505. Thus these peri-
odic solitons represent the effect of a dc-bias perturbation
around p; = 0.582 and w = 0.91. This kind of behav-
ior is closely reminiscent of the results obtained for other
dynamical systems in which chaos can be controlled by
small perturbations [16]. We note that this “stabilizing”
effect of our chaotic attractor only operates for very small
perturbations: Increasing the dc-bias force even a factor
0.1 above or below 0.5 the system exhibits completely
different attractors and chaotic states.

We note that the locking on high degree subharmonics
could be an indication of overlapping of Arnold tongues
[17], especially if we note that the periodicity of the lock-
ing depends on the value of the applied frequency. A com-
mon feature of our subharmonic locking with the over-
lapping of Arnold tongues is the fact that this latter phe-
nomenon determines the threshold for the transition to
chaos via quasiperiodicity in a number of systems [15,17].
In our system, we have always found that the transition
to chaos was anticipated by the locking on high degree
subharmonics. Unfortunately, a careful frequency scan
to verify the possible existence of these tongues requires,
in the present case, a prohibitive amount of computing.

We have reproduced, however, the same kind of phe-
nomenology observed for the drive frequency w = 0.91 for
several other values of the frequency and in some cases
locking up to the 40th subharmonic of the drive frequency
was found. We note that the generation of high degree
subharmonics is not new for the Josephson junctions re-
lated dynamics [6] of the driven pendulum; however, the
scenario that we are describing, to our knowledge, has
not been reported previously. The value of the ac am-
plitude for which we find the jump from quasiperiodic
trajectories to chaos depends on the value of the drive
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frequency, but its value always lies below the border for
the onset of chaos reported in Fig. 1 of Ref. [5].

A more experiment oriented sequence of the phenom-
ena that we have described above is shown in Fig. 2. In
this figure we report the power spectrum of the time se-
ries corresponding to p; = 0.25 (a), 0.55 (b), 0.56 (c),
and 0.582 (d) (the value of the drive frequency is 0.91
for all cases). The spectra of Fig. 2 give another clear
representation of the dynamics of our driven, damped
sine-Gordon system. We see that, when the ac-drive am-
plitude is far below the critical value for switching to
the subharmonic behavior [Fig. 2(a)], there exist some
bunched subharmonic lines at multiples of the seventh
subharmonic but, even if the background noise is low,
the spectrum is somewhat irregular. This kind of spec-
trum reminds us of the ones reported previously for the
driven long Josephson junction [9,11]. In Fig. 2(b), very
close to the critical amplitude, we find a spectrum very
rich in harmonic content with an increased background
noise level, but still somewhat regular in the spacing of
the components. In Fig. 2(c) we see in the frequency
domain the 25th subharmonic locking while in Fig. 2(d)
we see a typical chaotic spectrum with random frequency
components and increased background noise level.

Since we found that the general properties of the tran-
sition to chaos of our system were independent of the
particular point on the amplitude-frequency plane that
we were investigating, we tried to characterize all our at-
tractors in a more quantitative fashion. One possibility
is to measure their singularity spectrum, f(a) [14]. We
have measured this spectrum with two different meth-
ods which gave similar results. The first method uses
a Legendre transformation to smooth the experimental
data [14]; the second method is based on the Shannon
[18] definition of entropy and was proposed by Chhabra
and Jensen [19]. This latter method has also been suc-
cessfully employed by other authors for the analysis of
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FIG. 2.

Power spectra corresponding to the sequence
p1 = 0.25 (a); 0.55 (b); 0.56 (c); 0.582 (d). The passage
from (b) to (¢) to (d) clearly indicates a discontinuity in the
dynamical response of the system. In between the two noisy
spectra (b) and (d) we have a stable subharmonic locking.
Axes are in normalized units.
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experimental data [20]. The results that we show be-
low are all based on this second method, which we found
very versatile for the analysis of our data. We will report
on a full comparison of the two methods, applied to our
problem, in a future paper.

The details of the method that we employ were well
described in Ref. [19]. The basic procedure consists of di-
viding the area of the attractor into boxes whose size L =
1/N (in our case we found that the most reasonable value
of N was of the order of 60). Counting the number of
points of the attractor falling in the ith box, one can eval-
uate the probability P; associated with it; then we con-
struct the family of normalized measures from the proba-
bilities defined as pi(g, L) = [Pi(L)]?/ 3 ,[P;(L)]?. After
evaluating P; and p;(g, L), the calculation of the measure
f(e) and the singularity strength « are straightforward
[19]. We performed this procedure for a box-size sequence
like [1,2,3,...,n] and sequences like [2},2%,23 ... 2"] and
these two processes gave results consistent within the ex-
perimental error. In Fig. 3 we show typical results of the
determination of a and f(a). We can see that our plots
have the same features as usually described [19,20]: for
positive values of ¢ (corresponding to the leftmost por-
tion of the curves) the linear regressions [19] produce a
small error while the negative g values give rise to a wide
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FIG. 3. (a) The f(a) curves obtained for some of the criti-
cal attractors that we have obtained. We show here, for figure
clarity, only the error bars of one curve. (b) Comparison of
the orbit obtained for p; = 0.2712, w = 0.4 (circles) with the
critical golden mean attractor of the circle map (continuous
curve, with error bars). Axes are in normalized units.
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spread of the data generating a larger error.

In Fig. 3(a) we report the f(a) function for several
critical attractors that we have observed. Those attrac-
tors are the ones obtained for different frequencies when
the value of the ac drive is just below the point where
the system locks on subharmonics. We can see in this
figure that all the curves are consistent within the nu-
merical uncertainty (we only depict the error bar for one
of the curves). This phenomenon confirms our impres-
sion that the transitions to chaos may have properties
which are not dependent upon the particular frequency
at the transition. The other interesting feature of our
threshold attractors is the fact that their singularity spec-
trum is very close to that of the circle map at the golden
mean transition [14,17]. The similarities of our attrac-
tors with those obtained from the orbit of the circle map
are shown with greater emphasis in Fig. 3(b), where we
superimpose the f(a) curve for the critical orbit of the
circle map (full line) and one of our critical attractors
(circles) obtained for a drive frequency w = 0.4 and a
drive amplitude p; = 0.2712.

We note that the drive frequency of Fig. 3(b) has not
been chosen in order to have a normalized frequency (soli-
ton oscillation frequency divided by drive frequency) of
th order of the golden mean. This ratio for the curve of
Fig. 3(d) is 1.286 larger than unity, which could be an in-
dication that the basic dynamic mechanism is somewhat
different. Nevertheless, the similarity of our singularity
spectra with that of the circle map is very striking, espe-
cially noting that in the negative g region all the curves of
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Fig. 3(a) fall within the error bar obtained for the circle
map.

In conclusion, we have described a scenario for the
transition to chaos from quasiperiodicity of a soliton os-
cillator driven by an ac signal whose frequency is below
the plasma frequency of the sine-Gordon system. We
have focused on features of the scenario that are not
dependent on the particular frequency of the ac drive
chosen for observing the transition. An analysis of the
attractors close to the threshold for onset of the chaotic
states, performed in terms of singularity spectra, reveals
notable commonalities and very close similarities to the
transition to chaos of the circle map at the golden mean
frequency. We note that some of the features that we
have reported could have interesting practical counter-
parts if we consider that a fluxon oscillator [5,11,13],
which is the Josephson junction counterpart of our sys-
tem of Egs. (1) and (2), can oscillate in the microwave
and millimeter-wave range of the electromagnetic spec-
trum. Our simulations show that, when the oscillator
is driven close to its plasma frequency [12], it may have
noticeable down converting capabilities over significant
frequencies intervals.
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